Version 1.0

General Certificate of Education (A-level) June 2012

Mathematics

MPC2

(Specification 6360)

Pure Core 2

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2012 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX.

Key to mark scheme abbreviations

М	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
А	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
\sqrt{or} ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
–x EE	deduct <i>x</i> marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
с	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

General Certificate of Education MPC2 June 2012

Q	Solution	Marks	Total	Comments
1 (a)	(common difference) = 9	B1	1	9
(b)	(100th term $) = 23 + (100 - 1) d$	M1		23 + (100 - 1) d or better seen (or used with $d = 9$ or with $d = c$'s answer (a))
	= 914	A1	2	914 NMS mark as B2 or B0
(c)	(Sum of series) = $\frac{280}{2}(23 + 2534)$			Substitution of $n = 280$, $l = 2534$, a = 23 (or c's value of a used in (b)),
		M1		$d = 9$ (or c's answer to (a)) into $\frac{n}{2}(a+l)$
	{or $\frac{280}{2} [2 \times 23 + (280 - 1)(9)]$ }			PI or $\frac{n}{2} [2a + (n-1)d]$ PI
	= 357 980	A1	2	357 980 NMS mark as B2 or B0
	Total		5	
2(a)	(Area) = $\frac{1}{2}$ (26)(31.5)sin θ	M1		$\frac{1}{2}(26)(31.5)\sin(\theta)$ stated or used
	$(Area) = \frac{1}{2} (26)(31.5) \sin \theta$ $\frac{1}{2} (26)(31.5) \times \frac{5}{13} = 157.5 \text{ (cm}^2)$	A1	2	OE eg $\frac{315}{2}$ Condone AWRT 157.50 NMS: 157.5 or AWRT 157.50 scores B2
(b)	$(\cos\theta =)\frac{12}{13}$	B1	1	$\frac{12}{13}$ OE exact fraction
(c)	$\{AC^{2}=\}\$ 31.5 ² +26 ² -2×31.5×26×cos (θ)	M1		RHS of cosine rule
	$31.5^{-} + 26^{-} - 2 \times 31.5 \times 26 \times \cos(\theta)$ = 992.25 + 676 - 1512 = 1668.25 - 1512 = 156.25	m1		Correct order of evaluation. Do not award if evaluation leads to or would lead to RHS value being outside interval 120 to 195
	$AC = \sqrt{156.25} = 12.5 \text{ (cm)}$	A1	3	12.5 OE with no sight of premature approximation clearly used
	(Alternative) { $AC^2 =$ } (26 sin θ) ² + (31.5 - 26 cos θ) ² = 10 ² + 7.5 ²	(M1) (m1)		
	$AC = \sqrt{156.25} = 12.5 \text{ (cm)}$	(A1)	(3)	
	Total		6	

Q	Solution	Marks	Total	Comments
3(a)	$\dots = \left(x^{\frac{3}{2}}\right)^2 - 2x^{\frac{3}{2}} + 1 = x^3 - 2x^{\frac{3}{2}} + 1$	B2,1,0	2	B2 for $x^3 - 2x^{\frac{3}{2}} + 1$ or $x^3 - 2x\sqrt{x} + 1$ (B1 fully correct unsimplified expression.
				seen eg $\left(x^{\frac{3}{2}}\right)^2 - x^{\frac{3}{2}} - x^{\frac{3}{2}} + 1$ or B1 for either $x^3 - 2x^{\frac{3}{2}}$ OE seen
				or $x^{3} + 2x^{\frac{3}{2}} + 1$ OE seen or B1 for $-x^{3} + 2x^{\frac{3}{2}} - 1$ OE seen)
(b)	$\int \left(x^{\frac{3}{2}} - 1\right)^2 dx = \frac{x^4}{4} - \frac{2x^{\frac{5}{2}}}{2.5} + x \ (+c)$	B1F		Ft on correct integration of all non $x^{\frac{3}{2}}$ terms (at least two) in c's expression. in (a)
		M1		Integration of a $kx^{\frac{3}{2}}$ as $\lambda x^{\frac{5}{2}}$ (ie power correct)
	$\{=0.25x^4 - 0.8x^{2.5} + x(+c)\}$	A1F	3	Correct integration of c's $x^{\frac{3}{2}}$ term(s) ACF
(c)	$\int_{1}^{4} \left(x^{\frac{3}{2}} - 1\right)^2 \mathrm{d}x$			
	$= \left(\frac{4^4}{4} - \frac{2(4^{\frac{5}{2}})}{2.5} + 4\right) - \left(\frac{1}{4} - \frac{2}{2.5} + 1\right)$	M1		F(4) - F(1) attempted following integration. If $F(x)$ incorrect, ft c's answer to (b) provided integration attempted
	$\{=\frac{212}{5} - \frac{9}{20} = 42.4 - 0.45\} = 41.95$	A1	2	41.95 OE eg 839/20 Since 'Hence' NMS scores 0/2
	Total		7	

Q	Solution	Marks	Total	Comments
4 (a)	$u_1 = 12$	B1		CAO Must be 12
	$u_1 = 12$ $u_2 = 48 \times \frac{1}{16} = 3$	B1F	2	If not correct, ft on c's $u_1 \times \frac{1}{4}$
(b)	$r = \frac{1}{4}$	B1F	1	Only ft on $r = (c's \ u_2) \div (c's \ u_1)$ if r < 1. Answers may be in equivalent fraction form or exact decimal form. If other notation used award the mark if correct or ft value confirmed in (c)
(c)	$(S_{\infty} =)\frac{u_1}{1-r} = \frac{12}{1-\frac{1}{4}}$	M1		Use of $\frac{a}{1-r}$, ft on c's u_1 and c's r in (a) and (b) if not recovered, provided $ r < 1$
	= 16	A1F	2	If not 16, ft on c's u_1 and c's r in (a) and (b) provided $ r < 1$.
(d)	$\sum_{n=4}^{\infty} u_n = S_{\infty} - \sum_{n=1}^{3} u_n$	M1		OE eg RHS $S_{\infty} - (u_1 + u_2 + u_3)$
	$u_3 = \frac{3}{4}$ (or $\sum_{n=1}^{3} u_n = \frac{12(1-0.25^3)}{1-0.25}$)	B1		Either result, or better eg $\sum_{n=1}^{3} u_n = 15.75$
	$\sum_{n=4}^{\infty} u_n = 0.25$	A1	3	NMS scores 0/3
				<u>SC</u> For c's scoring 0/3 in (d); Award B1 to candidates who used $S_{\infty} - S_4$ for
				$\sum_{n=4}^{\infty} u_n$ and obtained the answer $\frac{1}{16}$ OE
	(Alternative)			
	$\left(\sum_{n=4}^{\infty} u_n = \frac{u_4}{1-r}\right)$ $\left(u_4 = \frac{3}{16} \ (= 0.1875) \)$ $\left(\sum_{n=4}^{\infty} u_n = \frac{3}{16} \div \frac{3}{4} = \frac{1}{4}\right)$	(M1)		
	$(u_4 = \frac{3}{16} \ (= 0.1875))$	(B1)		
	$\left(\sum_{n=4}^{\infty} u_n = \frac{3}{16} \div \frac{3}{4} = \frac{1}{4}\right)$	(A1)	(3)	(NMS scores 0/3)
	Total		8	

Q	Solution	Marks	Total	Comments
5(a)	${\rm Arc} = r \theta$	M1		$r\theta$ seen or used for the arc length
5(a)	$= 18 \times \frac{2\pi}{2} = 12\pi$ (m)	A1	2	12π
	$-18 \times \frac{3}{3} = 12\pi$ (m)	AI	Z	12π
(b)(i)	$\alpha = \frac{\pi}{3}$	B1	1	$\frac{1}{3}\pi$ OE expression which simplifies to $\frac{1}{3}\pi$
(ii)	{Area of sector =} $\frac{1}{2}r^2\theta = \frac{1}{2} \times 18^2 \times \frac{2\pi}{3}$	M1		$\frac{1}{2}r^2\theta$ seen or used for the sector area
	$= 108 \pi$ (=339.(29))	A1		If not exact accept 3sf or better PI by final correct answer
	$\tan\frac{\pi}{3} = \frac{TP}{18} \{ \text{or} \ \tan\frac{\alpha}{2} = \frac{18}{TP} \}$			OE Correct method (PI) to find either <i>TP</i> or
	{or $PQ = 2 \times 18 \sin \frac{\pi}{3}$ } {or $\frac{1}{2}PQ = 18 \sin \frac{\pi}{3}$ }			<i>TQ</i> (= <i>TP</i>) or <i>OT</i> or <i>PQ</i> or $\frac{1}{2}$ <i>PQ</i> . If α not $\pi/3$ then ft c's value for α in (b)(i). If c finds
	5 2 5	M1		two of <i>TP/TQ</i> , <i>OT</i> and <i>PQ</i> / $\frac{1}{2}$ <i>PQ</i> and gets
	$\left\{ \text{ or } \cos\frac{\pi}{3} = \frac{18}{OT} \right\} \left\{ \text{ or } \sin\frac{\alpha}{2} = \frac{18}{OT} \right\}$			one correct, one wrong, mark correct one ie M1A1 (M1A0 possible if no correct length)
	$TP=18\sqrt{3} = 31.1769$ exact or 31.1 to 31.2 incl} {or PQ=18\sqrt{3} = 31.1769	A1		Correct <i>TP</i> or <i>TQ</i> or <i>PQ</i> or $\frac{1}{2}PQ$ or <i>OT</i>
	exact or 31.1 to 31.2 incl} {or $OT = 36$ };	AI		either exact value or in range indicated PI by value 561 to 561.3 inclusive for the area of the kite.
	$\left\{\frac{1}{2}PQ = 9\sqrt{3} \text{ or } 15.5 \text{ to } 15.6 \text{ incl}\right\}$ Area of kite $PTQO = 2 \times \frac{1}{2} \times 18 \times TP$			OE valid method to find area of kite, down to a correct expression with no
	{or Area = $\frac{1}{2}(18^2)\sin\frac{2\pi}{3} + \frac{1}{2}TP^2\sin\alpha$ } {or area kite = $\frac{1}{2} \times PQ \times \left[18 \div \cos\frac{\pi}{3}\right]$ }	M1		more than 1 unknown length; ft on c's value of α . For method using > one unknown length this M is dependent on previous M for length
	$\left\{ \text{or area kite} - \frac{1}{2} \wedge I \not Q \wedge \left[13 + \cos \frac{1}{3} \right] \right\}$	1111		PI by value $324\sqrt{3}$ or a numerical
	{or area kite $=\frac{1}{2} \times 2 \times 18 \sin \frac{\pi}{3} \times OT$ } {=18 ² $\sqrt{3}$ } {= 2 \times 162 $\sqrt{3}$ }; {243 $\sqrt{3}$ + 81 $\sqrt{3}$ }			expression which simplifies to $324\sqrt{3}$; or a value 561 to 561.3 inclusive for the area of the kite. Can also be implied by award
	Alternative			of the final A1
	Area triangle $PTQ = \frac{1}{2} TP^2 \sin \alpha$ and	$(\mathbf{M}^{\mathbf{I}})$		OE Alternative: Award this method mark if both area of triangle PTQ (=243 $\sqrt{3}$)
	Area triangle $POQ = \frac{1}{2} \ 18^2 \sin(2\pi/3)$	(M1)		and area of triangle POQ (=81 $\sqrt{3}$) are found with or without finding area of kite
	Area of shaded region = $561.(18) -108 \pi =$ $221.89 = 222 (m^2) \text{ to } 3\text{sf}$ Alternative	A1	6	If not 222, condone value from 221.7 to 222.0 inclusive
	Area of shaded region =			
	$243\sqrt{3} - (108\pi - 81\sqrt{3}) =$ 221.89= 222 (m ²) to 3sf	(A1)	(6)	
	Total		9	

Q	Solution	Marks	Total	Comments
6(a)(i)	(When $x = 2$) $\frac{dy}{dx} = 12 - 1 - 11 = 0$	B1	1	AG Must see intermediate evaluations
(ii)	$\frac{4}{x^2} = 4x^{-2} \{ \text{so } \frac{dy}{dx} = 3x^2 - 4x^{-2} - 11 \}$	B1		$\frac{4}{x^2} = 4x^{-2}$, seen in (a)(ii) or earlier. PI by $\pm 8x^{-3}$ term in answer
	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 6x + 8x^{-3}$	M1		Correct powers of <i>x</i> correctly obtained from differentiating the first two terms
	dx^2	A1		$6x + 8x^{-3}$ ACF
	When $x = 2$, $\frac{d^2 y}{dx^2} = 12 + 8/8 = 13$	A1	4	
(iii)	Since $\frac{d^2 y}{dx^2} > 0$, <i>P</i> is a minimum point.	E1F	1	Ft on c's value of $y''(2)$ in (a)(ii) but must see reference to sign of $y''(2)$ either explicitly or as inequality, as well as the correct ft conclusion
(b)	$\int \left(3x^2 - \frac{4}{x^2} - 11\right) dx = x^3 + 4x^{-1} - 11x(+c)$	M1		Attempt to integrate $\frac{dy}{dx}$ with at least two
	$(y =) x^{3} + 4x^{-1} - 11x (+ c)$	A1		of the three terms integrated correctly For $x^3 + 4x^{-1} - 11x$ OE even unsimplified Substituting. $x = 2$, $y = 1$ into $y = F(x) +$
	When $x = 2, y = 1 \implies 1 = 8 + 2 - 22 + c$	M1		<i>c</i> ' in attempt to find constant of integration, where $F(x)$ follows attempted integration of expression for $\frac{dy}{dx}$
	$y = x^3 + 4x^{-1} - 11x + 13$	A1	4	ACF dx
	Total		10	

Q	Solution	Marks	Total	Comments
7(a)	$\tan \theta = -1$ $\sin^2 \theta = 3\cos^2 \theta$	B1		
	$\frac{\sin^2 \theta}{\cos^2 \theta} = \tan^2 \theta$	M1		$\frac{\sin\theta}{\cos\theta} = \tan\theta \text{ used on } \sin^2\theta - 3\cos^2\theta$ or forms and solves a correct quadratic in sin or cos and then uses to find $\tan\theta$
	$\tan^2\theta=3$	A1		$\tan^{2} \theta = 3 \text{ or } \tan^{2} \theta - 3 = 0$ or $(\tan \theta + \sqrt{3})(\tan \theta - \sqrt{3}) = 0$ or $\tan \theta = \sqrt{3}$ or $\tan \theta = -\sqrt{3}$
	$\tan\theta = \pm\sqrt{3}$	A1	4	Both
(b)	$\tan \theta = -1$, $\tan \theta = \sqrt{3}$, $\tan \theta = -\sqrt{3}$ $(\theta =) 135^{\circ}$, $(\theta =) 60^{\circ}$, $(\theta =) 120^{\circ}$	M1 A2,1,0	3	Uses part (a), at least as far as attempting to solve $\tan \theta = k$, where k is any one of c's values for $\tan \theta$ If not A2 for all three correct, award A1 for two values correct
				Special Case If $\tan^2 \theta = \frac{1}{3}$ in part (a) and M1 scored in (a) and in (b) then apply ft in part (b) ie A2F for $\theta = 135^{\circ}$, 30°, 150°. (A1F if two of these ft values) Special Case : If M0 then award B1 for any two correct values provided no incorrect extras in given interval. If > 3 answers in the given interval, deduct 1 mark for each extra in the given interval from any A marks awarded in (b). Ignore any answers outside $0 \le \theta \le 180$
	Total		7	

Q	Solution	Marks	Total	Comments
8(a)	Î _	B1		Correct shape, curve in 1^{st} two quadrants only, crossing positive <i>y</i> -axis once and asymptotic to negative <i>x</i> -axis.
	(0, 1) 1 0 x	B1	2	Coordinates $(0, 1)$. Accept <i>y</i> -intercept indicated as 1 on diagram or stated as 'intercept = 1' B0 if graph clearly drawn crossing axes at more than one point
(b)(i)	$y^2 - 12 = y$ OE; $7^{2x} - 12 = 7^x$ OE	M1		Eliminates either <i>x</i> or <i>y</i> correctly
	$(y-4)(y+3)(=0); (7^{x}-4)(7^{x}+3)(=0)$	A1		Correct factors or $y = \frac{1 \pm \sqrt{49}}{2}$ or better or $7^{x} = \frac{1 \pm \sqrt{49}}{2}$ or better
	Since $y (=7^{x}) > 0$, $[y (=7^{x}) \neq -3]$ (there is exactly one point of intersection)	E1		Clear indication that c's negative solution(s) has/have been considered and rejected
	y-coordinate is 4	B1	4	
(ii)	$7^{x} = 4 \text{ so } x \log 7 = \log 4 \text{ [or } x = \log_{7} 4 \text{]}$	M1		OE ft on $7^{x} = k$, where k is positive, to either x log $7 = \log k$ or $x = \log_{7} k$
	x = 0.712(414) = 0.712 to 3SF	A1	2	Condone > three significant figures. If use of logarithms not explicitly seen then score $0/2$
	Total		8	

9(a) $h = 0.25$ $f(x) = \log_{10}(x^2 + 1)$ $1 \approx h/2(x,)$ $\{\frac{1}{2} = f(0) + f(1) + 2 [f(0.25) + f(0.5) + f(0.75)]$ $\{\frac{1}{2} = 0 + 0.3010, + 2(0.317058,) = 0.935147$ $(1 \approx 0.125 [0.935147,] = 0.117 (to 3SF)$ M1 OE summing of areas of the 'trapezia' (b) $\begin{bmatrix} 0\\1\\1 \end{bmatrix}$ B1 1 OE Accept 1sf evidence (c) $0.010, -\frac{1}{20}, 0.317058,) = 0.935147 = 0.3010, -\frac{1}{20}, 0.25 [0.935147,] = 0.117 (to 3SF)$ A1 4 CAO Must be 0.117 (b) $\begin{bmatrix} 0\\1\\1 \end{bmatrix}$ B1 1 Condone missing bases for M mark. Accept logs' replaced by 2logx in MI line Accept logs' replaced by 2logx in MI line Accept logs' replaced by 2logx in MI line Accept logs in 0 + 10 gins 0.12 Yinth in correct form so that stretch details can be stated directly (iii) $y = 1 + 2\log_{10} x$ $1 \log_{10}(\sqrt{10} x)^2$ M1 M1 S2 for correct direction and scale factor ACF (B1 for correct ast scale factor ACF (B1 for x-direction, scale factor ACF (B1 for x-direction, scale factor $\sqrt{10}$, $\sqrt{9}$ Apply ISW if de follows exact values. (Or B1 for 'x-direction, scale factor $\sqrt{10}$, $\sqrt{9}$ Apply ISW if de follows exact to form so that stretch details can be stated for $\sqrt{10}$, $\sqrt{9}$, $\sqrt{10}$, 10	Q	Solution	Marks	Total	Comments
(i) $f(x) = \log_{10}(x^2 + 1)$ $x = h2(x,)$ (i) $y = 1/2 = h2(x,)$ (i) $y = 1/2$	9 (a)	h = 0.25	B1		Ы
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $) (u)		DI		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			M1		OF summing of areas of the 'transzia'
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		2 [f(0.25) + f(0.5) + f(0.75)]	1011		OE summing of areas of the trapezia
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		$\log 1 + \log 2 + 2 \left[\log \frac{17}{16} + \log \frac{5}{4} + \log \frac{25}{16} \right]$	A 1		OF Accent 1sf evidence
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			211		OE Recept 151 evidence
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		= 0.3010+2(0.317058) = 0.935147			
$\begin{bmatrix} 1 \end{bmatrix}$ (c)(i) $\log_{10}(10x^2) = \log_{10} 10 + \log_{10} x^2$ $= 1 + 2\log_{10} x$ (ii) $y = 1 + 2\log_{10} x = \log_{10}(10x^2)$ Either $y = 2\log_{10}(\sqrt{10} x)$ (to compare $y = 2\log_{10} x$ and $y = \log_{10}(\sqrt{10} x)^2$ (iii) $y = 1 + 2\log_{10} x^2$ and $y = \log_{10}(\sqrt{10} x)^2$ Fither $y = 2\log_{10} x^2$ and $y = \log_{10}(\sqrt{10} x)^2$ (i) $y = 1 + 2\log_{10} x^2$ and $y = \log_{10}(\sqrt{10} x)^2$ (iii) $y = 1 + 2\log_{10} x^2$ and $y = \log_{10}(\sqrt{10} x)^2$ (iii) $y = 1 + 2\log_{10} x^2$ and $y = \log_{10}(\sqrt{10} x)^2$ (iii) $y = 1 + 2\log_{10} x^2$ and $y = \log_{10}(\sqrt{10} x)^2$ (iii) $y = 1 + 2\log_{10} x^2$ and $y = \log_{10}(\sqrt{10} x)^2$ (iii) $\log_{10}(10x^2) = \log_{10}(x^2 + 1)$ (iv) $(\log^2 x^2 + 1, 9x^2 = 1)$ and since $x > 0$) $x = \frac{1}{3}$ (v-coordinate of P) $y = \log_{10} \frac{10}{9}$ (v-coordinate of P) $y = \log_{10} \frac{10}{9}$ (v) $\log_{10} \frac{10}{9} = \log_{10} \frac{100}{729}$ (v) $\log_{10} \frac{10}{9} = \log_{10} \frac{1000}{729}$ (v) $\log_{10} \frac{1000}{7$		$(I \approx) 0.125 [0.935147] = 0.117 (to 3SF)$	A1	4	CAO Must be 0.117
$\begin{bmatrix} 1 \end{bmatrix}$ (c)(i) $\log_{10}(10x^2) = \log_{10} 10 + \log_{10} x^2$ $= 1 + 2\log_{10} x$ (ii) $y = 1 + 2\log_{10} x = \log_{10}(10x^2)$ Either $y = 2\log_{10}(\sqrt{10} x)$ (to compare $y = 2\log_{10} x$ and $y = \log_{10}(\sqrt{10} x)^2$ (iii) $y = 1 + 2\log_{10} x^2$ and $y = \log_{10}(\sqrt{10} x)^2$ Fither $y = 2\log_{10} x^2$ and $y = \log_{10}(\sqrt{10} x)^2$ (i) $y = 1 + 2\log_{10} x^2$ and $y = \log_{10}(\sqrt{10} x)^2$ (iii) $y = 1 + 2\log_{10} x^2$ and $y = \log_{10}(\sqrt{10} x)^2$ (iii) $y = 1 + 2\log_{10} x^2$ and $y = \log_{10}(\sqrt{10} x)^2$ (iii) $y = 1 + 2\log_{10} x^2$ and $y = \log_{10}(\sqrt{10} x)^2$ (iii) $y = 1 + 2\log_{10} x^2$ and $y = \log_{10}(\sqrt{10} x)^2$ (iii) $\log_{10}(10x^2) = \log_{10}(x^2 + 1)$ (iv) $(\log^2 x^2 + 1, 9x^2 = 1)$ and since $x > 0$) $x = \frac{1}{3}$ (v-coordinate of P) $y = \log_{10} \frac{10}{9}$ (v-coordinate of P) $y = \log_{10} \frac{10}{9}$ (v) $\log_{10} \frac{10}{9} = \log_{10} \frac{100}{729}$ (v) $\log_{10} \frac{10}{9} = \log_{10} \frac{1000}{729}$ (v) $\log_{10} \frac{1000}{7$	(h)	$\begin{bmatrix} 0 \end{bmatrix}$	B 1	1	
(ii) $\begin{array}{ c c } log_{10}(10x^{2}) = \log_{10}(10x^{2}) \\ = 1 + 2\log_{10} x \\ = 1 + 2\log_{10} x \\ y = 1 + 2\log_{10} x = \log_{10}(10x^{2}) \\ Either y = 2\log_{10}(\sqrt{10} x) \text{ (to compare} \\ y = 2\log_{x}) \\ or both y = \log_{10} x^{2} \text{ and } y = \log_{10}(\sqrt{10} x)^{2} \\ (Stretch) \text{ parallel to } x-axis, \text{ sf } \frac{1}{\sqrt{10}} \text{ OE} \\ (Stretch) \text{ parallel to } x-axis, \text{ sf } \frac{1}{\sqrt{10}} \text{ OE} \\ (Stretch) \text{ parallel to } x-axis, \text{ sf } \frac{1}{\sqrt{10}} \text{ OE} \\ (Or B1 \text{ for correct exact scale factor ACF}) \\ (iii) \log_{10}(10x^{2}) = \log_{10}(x^{2} + 1) \\ (10x^{2} = x^{2} + 1, 9x^{2} = 1 \\ \text{ and since } x > 0) x = \frac{1}{3} \\ (y-coordinate of P) y = \log_{10}\frac{10}{9} \\ Or y = \log\left(\frac{1}{9} + 1\right) \\ Gradient of OP = \\ 3\log_{10}\frac{10}{9} = \log_{10}\frac{1000}{729} \\ \hline \end{array} $ A1	(6)		DI	1	
Image: Second state of the se	(c)(i)	$\log_{10}(10x^2) = \log_{10} 10 + \log_{10} x^2$	M1		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					
(ii) $y = 1 + 2 \log_{10} x = \log_{10} (10x^2)$ Either $y = 2 \log_{10} (\sqrt{10} x)$ (to compare $y = 2 \log_{10} x^2$ and $y = \log_{10} (\sqrt{10} x)^2$ (Stretch) parallel to x-axis, sf $\frac{1}{\sqrt{10}}$ OE (Stretch) parallel to x-axis, sf $\frac{1}{\sqrt{10}}$ OE (iii) $\log_{10} (10x^2) = \log_{10} (x^2 + 1)$ $(10x^2 = x^2 + 1, 9x^2 = 1$ and since $x > 0$) $x = \frac{1}{3}$ (y-coordinate of P) $y = \log_{10} \frac{10}{9}$ Or $y = \log(\frac{1}{9} + 1)$ Gradient of $OP =$ $3 \log_{10} \frac{10}{9} = \log_{10} \frac{1000}{729}$ (iii) $\log_{10} \frac{1000}{729}$; Accept 'a=1000, b=729'		$= 1 + 2 \log_{10} x$	Al	2	$\log_{10} 10 = 1$ given.
Either $y = 2 \log_{10} (\sqrt{10} x)$ (to compare $y = 2 \log_3 x)$ or both $y = \log_{10} x^2$ and $y = \log_{10} (\sqrt{10} x)^2$ A1Writing in correct form so that stretch details can be stated directly(Stretch) parallel to x-axis, sf $\frac{1}{\sqrt{10}}$ OEB2,1,04B2 for correct direction and scale factor ACF (B1 for correct exact scale factor ACF) (or B1 for 'x-direction, scale factor 1/10') (or B1 for 'x-direction, scale factor 1/10') (or B1 for 'x-direction, scale factor $\sqrt{10}$ ') Apply ISW if dee follows exact values. (OE scale factor must be in exact form)(iii) $\log_{10} (10x^2) = \log_{10} (x^2 + 1)$ $(10x^2 = x^2 + 1, 9x^2 = 1)$ and since $x > 0$) $x = \frac{1}{3}$ (y-coordinate of P) $y = \log_{10} \frac{10}{9}$ Or $y = \log(\frac{1}{9} + 1)$ Gradient of $OP =$ $3 \log_{10} \frac{10}{9} = \log_{10} \frac{1000}{729}$ A1A1 A1PI by $3 \log \frac{10}{9}$ OE for the gradient of OP $\frac{1000}{729}$; Accept ' $a = 1000, b = 729$ 'Image: the state of the sta	(ii)	$y = 1 + 2 \log_{10} x = \log_{10} (10x^2)$	M1		
A1A1details can be stated directlyor both $y = \log_{10} x^2$ and $y = \log_{10} (\sqrt{10} x)^2$ A1B2 for correct direction and scale factor ACF(Stretch) parallel to x-axis, sf $\frac{1}{\sqrt{10}}$ OEB2,1,04B2 for correct direction and scale factor ACF(Giii) $\log_{10} (10x^2) = \log_{10} (x^2 + 1)$ B2,1,04B2 for correct direction, scale factor 1/10 ')(iii) $\log_{10} (10x^2) = \log_{10} (x^2 + 1)$ M1PI by $10x^2 = x^2 + 1$ or correct x($10x^2 = x^2 + 1, 9x^2 = 1$ A1PI by $10x^2 = x^2 + 1$ or correct xand since $x > 0$) $x = \frac{1}{3}$ A1 $x = \frac{1}{3}$ OE stated or used; accept $\sqrt{\frac{1}{9}}, \frac{1}{\sqrt{9}}$ Or $y = \log\left(\frac{1}{9} + 1\right)$ A1PI by $3\log\frac{10}{9}$ OE for the gradient of OP Gradient of $OP =$ $3\log_{10}\frac{1000}{729}$ A14 $\log\frac{1000}{729}$; Accept ' a =1000, b =729'					
or both $y = \log_{10} x^2$ and $y = \log_{10} (\sqrt{10} x)^2$ (Stretch) parallel to x-axis, sf $\frac{1}{\sqrt{10}}$ OEB2,1,0B2 for correct direction and scale factor ACF (B1 for correct exact scale factor 1/10 ') (or B1 for 'x-direction, scale factor $\sqrt{10}$ ') Apply ISW if dee follows exact values. (OE scale factor must be in exact form)(iii) $\log_{10} (10x^2) = \log_{10} (x^2 + 1)$ $(10x^2 = x^2 + 1, 9x^2 = 1)$ and since $x > 0$) $x = \frac{1}{3}$ (y-coordinate of P) $y = \log_{10} \frac{10}{9}$ Or $y = \log\left(\frac{1}{9} + 1\right)$ Gradient of $OP =$ $3\log_{10} \frac{10}{9} = \log_{10} \frac{1000}{729}$ A1A1 A14 $\log\frac{1000}{729}$; Accept 'a=1000, b=729'5Total15			A1		-
(Stretch) parallel to x-axis, sf $\frac{1}{\sqrt{10}}$ OEB2,1,0AACF (B1 for correct exact scale factor ACF) (or B1 for 'x-direction, scale factor 1/10 ') (or B1 for 'x-direction, scale factor $\sqrt{10}$ ') Apply ISW if dee follows exact values. (OE scale factor must be in exact form)(iii) $\log_{10}(10x^2) = \log_{10}(x^2 + 1)$ $(10x^2 = x^2 + 1, 9x^2 = 1)$ and since $x > 0$) $x = \frac{1}{3}$ M1 A1 A1PI by $10x^2 = x^2 + 1$ or correct x $x = \frac{1}{3}$ OE stated or used; accept $\sqrt{\frac{1}{9}}, \frac{1}{\sqrt{9}}$ PI by $3\log\frac{10}{9}$ OE for the gradient of OP $gradient of OP =3\log_{10}\frac{10}{9} = \log_{10}\frac{1000}{729}A14UnderstandIog \frac{1000}{729}; Accept 'a=1000, b=729'$		or both $y = \log_{10} x^2$ and $y = \log_{10} (\sqrt{10} x)^2$			
(iii) $\log_{10}(10x^2) = \log_{10}(x^2 + 1)$ $(10x^2 = x^2 + 1, 9x^2 = 1$ and since $x > 0$) $x = \frac{1}{3}$ $(y \text{-coordinate of } P)$ $y = \log_{10}\frac{10}{9}$ $Or \ y = \log\left(\frac{1}{9} + 1\right)$ Gradient of OP = $3\log_{10}\frac{10}{9} = \log_{10}\frac{1000}{729}$ A1 A1 A1 A1 A1 A1 A1 A1 A1 A1		1			ACF
(iii) $\log_{10}(10x^2) = \log_{10}(x^2 + 1)$ (10x ² = x ² + 1, 9x ² = 1 and since x > 0) x = $\frac{1}{3}$ (y-coordinate of P) y = log ₁₀ $\frac{10}{9}$ Gradient of OP = $3\log_{10}\frac{10}{9} = \log_{10}\frac{1000}{729}$ A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1		(Stretch) parallel to x-axis, sf $\frac{1}{\sqrt{10}}$ OE	B2,1,0	4	· · · · · · · · · · · · · · · · · · ·
(iii) $\begin{vmatrix} \log_{10}(10x^2) = \log_{10}(x^2 + 1) \\ (10x^2 = x^2 + 1, 9x^2 = 1 \\ and since x > 0 \end{pmatrix} x = \frac{1}{3}$ (y-coordinate of P) $y = \log_{10}\frac{10}{9}$ Or $y = \log\left(\frac{1}{9} + 1\right)$ Gradient of $OP =$ $3\log_{10}\frac{10}{9} = \log_{10}\frac{1000}{729}$ A1 (V-coordinate of P) A1 (OE scale factor must be in exact form) (OE scale factor must be in exact form) PI by $10x^2 = x^2 + 1$ or correct x $x = \frac{1}{3}OE$ stated or used; accept $\sqrt{\frac{1}{9}}, \frac{1}{\sqrt{9}}$ (In the second seco					(or B1 for 'x-direction, scale factor $\sqrt{10}$ ')
(iii) $\log_{10}(10x^2) = \log_{10}(x^2 + 1)$ M1 $(10x^2 = x^2 + 1, 9x^2 = 1$ and since $x > 0$) $x = \frac{1}{3}$ A1 $(y \text{-coordinate of } P)$ $y = \log_{10}\frac{10}{9}$ A1 $Or \ y = \log\left(\frac{1}{9} + 1\right)$ Gradient of OP = $3\log_{10}\frac{10}{9} = \log_{10}\frac{1000}{729}$ A1 A1 A1 A1 A1 A1 A1 A1 A1 A1					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(***	$\log (10r^2) = \log (r^2 + 1)$	N/1		
$(y-coordinate of P)$ $y = \log_{10} \frac{10}{9}$ A1 PI by $3\log \frac{10}{9}$ OE for the gradient of OP $Or \ y = \log \left(\frac{1}{9} + 1\right)$ Gradient of $OP =$ A1 4 $\log \frac{1000}{729}$; Accept ' $a=1000, b=729$ ' $\log_{10} \frac{10}{9} = \log_{10} \frac{1000}{729}$ Total 15	(111)		1 VI 1		
$(y-coordinate of P)$ $y = \log_{10} \frac{10}{9}$ A1 PI by $3\log\frac{10}{9}$ OE for the gradient of OP Or $y = \log\left(\frac{1}{9}+1\right)$ Gradient of $OP =$ A1 4 $\log\frac{1000}{729}$; Accept ' $a=1000, b=729$ ' $\log_{10} \frac{10}{9} = \log_{10} \frac{1000}{729}$ Total 15		and since $x > 0$) $x = \frac{1}{2}$	A1		$x = \frac{1}{3}$ OE stated or used; accept $\sqrt{\frac{1}{9}}, \frac{1}{\sqrt{9}}$
Or $y = \log(\frac{1}{9} + 1)$ A1 PI by $3\log\frac{10}{9}$ OE for the gradient of OP Gradient of $OP =$ $3\log_{10}\frac{10}{9} = \log_{10}\frac{1000}{729}$ A1 4 $\log\frac{1000}{729}$; Accept 'a=1000, b=729' Total		J			
Or $y = \log\left(\frac{1}{9}+1\right)$ Gradient of $OP =$ $3\log_{10}\frac{10}{9} = \log_{10}\frac{1000}{729}$ A1 A1 A $\log\frac{1000}{729}$; Accept 'a=1000, b=729' Total 15		9	A1		PI by $3\log\frac{10}{2}$ OE for the gradient of OP
$3\log_{10} \frac{10}{9} = \log_{10} \frac{1000}{729}$ A1 A1 A $\log \frac{1000}{729}; \text{ Accept `}a=1000, b=729'$ Total 15		Or $y = \log\left(\frac{1}{9} + 1\right)$			9
Total 15					1 1000
		$3\log_{10}\frac{10}{9} = \log_{10}\frac{1000}{729}$	Al	4	$\log \frac{109}{729}$; Accept 'a=1000, b=729'
		Tatal		15	
ΤΟΤΑΙ.Ι 75 Ι		TOTAL		<u>15</u> 75	